Category Archives: Teaching

9th Grade Cancer Researchers

Chemists at work

I visited my friend Bill at SHS again last week.  You might remember him from this post from November in which I described the STEM program he helped to start.  As part of the STEM initiative, students investigate real-world problems and use literature and laboratory research to try to uncover real-world answers to these problems.  Over the past few weeks they have been studying cancer, and one question that they have been trying to answer is “How can chemotherapy treatment single out just cancerous cells in the body while leaving healthy cells alone?”

This topic has the potential to grab students right away.  Even 9th graders usually know someone touched by cancer: a friend, relative, or neighbor.  And the question is a subtle and complex one.  Basic chemotherapy usually involves introducing a cytotoxin (a chemical that damages or kills cells) into the body.  Because cancer cells grow much more rapidly than most other cells, they are more affected by the cytotoxin than normal cells and (in the best case scenarios) the cancer cells die while the normal cells survive.  Unfortunately in most cases healthy cells are also affected by chemo, especially those that grow and divide rapidly – like cells that make skin and hair (which is why chemo can cause hair loss).  An ideal treatment would target ONLY cancerous cells, and leave healthy cells alone.  This is the kind of treatment that Bill’s students began to investigate.

Bill and his kids got some important help from Dr. A.J. Boydston, a Chemistry Professor at the University of Washington.  Among many other things, Dr. Boydston studies polymers which can form micelles – large molecules that can aggregate together to form a kind of cage.  The idea is that you could build a custom molecular cage to hold, for example, a cytotoxic chemotherapy drug.  Then you could inject the caged drug into the patient.  As long as the drug is trapped inside the cage, it won’t harm any cells.  The key is to build a cage that remains closed as it bumps into normal cells, but springs open if it encounters a cancerous one to release the drug and kill the cell.

But how can you build a molecular cage that can remain ‘sealed’ for period of time, and then spring open?  And how can it tell a cancerous cell from a healthy one?  These are questions that Bill and his students explored, with the help of Dr. Boydston.  It turns out that if you vary the building blocks (monomers) of the polymers, you can change the properties of the micelle cages that are formed.  Some polymers will create cages that open in the presence of acid or base.  Some will open when exposed to ultraviolet light or ultrasonic agitation.  The students set out to design and create different polymers using different monomer building blocks.

polymer sheets

The Boydston Lab provided the actual, synthesized polymers – the same ones that they are using for their professional research.  Then the students began testing the different polymer cages to see under what circumstances they remained closed, and when they opened to release their contents.  Instead of using actual poisonous cytotoxins, the students used a dye called Nile Red to simulate the behavior of a chemotherapy drug.  Nile Red fluoresces under the action of UV light when trapped inside the micelle, but it does not when it is released into an aqueous environment.  Thus the students could use UV light to see if the “drug” was successfully trapped in the micelle, and when it came out.

fluorescence

Various student groups tested different conditions to see exactly when the micelles opened and when they did not.  Medical research on actual tumors indicates that many of them are more acidic that normal tissue by as much as 1 pH unit (a factor of 10 in acid concentration!), so polymer micelles that open in acid might be promising.  Doctors and researches are also experimenting with next-generation powerful light sources.  Micelles that open when exposed to a certain frequency of light could be useful if doctors can pin-point particular cancerous areas and illuminate them appropriately.

ultrasonic

While Bill and A.J. were on hand to answer questions and supervise the experiments, I was impressed with how the students took responsibility for their own investigations.  They had to really think about what they should do at each step in the lab, and what the results meant for their particular polymer.  At the end of the experiment, the students had to write up their research in the form of an academic poster, a format familiar to real scientists, professors, and grad students.

poster

This was a super-ambitious project for 9th graders, and I was impressed with how well Bill, A.J., and their colleagues pulled it off.  It was exciting for the students to work with actual research equipment and actual research polymers that may be approved for therapeutic use in humans within this decade.  They dug deeply into the concept of experimental design, and had to understand a host of complicated chemical concepts from acid/base chemistry to intermolecular forces, and to use those ideas in concert.  While some of the more detailed intricacies of the science were a bit beyond the comprehension of these 9th graders, the basic principles were well within their grasp – as was the realization that science can be a powerful tool for good, and that they are capable of using that tool themselves.

Leave a comment

Filed under Teaching

Two Excellent Schools, Worlds Apart – Part II

A couple days after my visit to Groton, I found myself weaving through the crazy NYC commute on my way to the Bronx High School of Science.

Bronx Science

Bronx Science is a science and math magnet school that is part of the New York City public school system.  Eighth graders in NYC can take a specialized entrance exam for one of the city’s eight elite magnet schools.  Gaining admission to Bronx Science is tough – only 5% of the students taking the test earn a spot.  Despite taking only a sliver of the total applicant pool, Bronx Science is crowded.  At over 3000 students, it is almost ten times the size of Groton, and is housed in a single building in the north Bronx.

I was met at the entrance by a beautiful Venetian glass mosaic, a peaceful 9/11 Memorial Garden, and two armed police officers staffing the main security substation who checked my ID and verified that I was expected.

The mosaic shows famous figures from science, from Archimedes to Galileo to Marie Curie.  Above them loom what looked to me like the gods of physics, chemistry, and biology.

Mosaic

The quotation below it reads, “Every great advance in science has issued from a new audacity of imagination.”

The 9/11 Garden remembers Bronx Science graduates who died in the September 11th attacks.

9/11 Garden

Also in the lobby area I saw a poster celebrating a Bronx Science grad who recently won the 2012 Nobel Prize in Chemistry.  Eight alumni from this school have won a Nobel Prize in science (the other seven in Physics).  Not bad when your high school has more Nobel’s than Australia….

Nobel Prize Poster

After I was finally cleared to go upstairs, I was escorted to the Chemistry Department.  Yes, Chemistry has its very own department here (along with its own assistant principal) – and with 13 full-time chemistry teachers, a full-fledged Chemistry Department does not seem excessive.  It was here in one of the chemistry offices that I met Lauren, a young teaching dynamo with whom I spent the rest of the day trying to keep up.

Despite being obviously very busy, Lauren took a generous amount of time to tell me about the school and the science program.  Chemistry is a required course at Bronx Science (along with Biology and Physics).  And every chemistry student is required to pass the New York State Regents Exam at the end of the course, a standardized test measuring his or her understanding of topics covered in the class.  Students who don’t pass the test don’t pass the class and must repeat it.

Of course Regents Chemistry (or Honors Regents Chemistry) is just the beginning for most students at Bronx Science.  They typically take the introductory course as 9th or 10th graders.  In their later years, students can move on to Advanced Placement (AP) Chem and then optionally Organic Chemistry and/or Analytical Chemistry.  These upper level classes cover much of the material found in a normal college freshman and college sophomore chemistry program.  I was fortunate enough to be able to sit in on a number of these classes to see what they are like.  The classes I watched tended to be fairly traditional in style, with teachers lecturing from the blackboard and students sitting in rows. But there was quite a bit of back-and-forth Q&A, and the students were engaged in every class.  There was also time for students to consult with each other in pairs and discuss the concept, a nice way to add student interactivity in classes that usually had student enrollments in the mid-30s.  The classes were well organized, quickly paced, and finely structured, with no wasted time.

I was impressed with how robust the laboratory program was, despite the space and budget limitations that were in place.  Many chemistry classes at Bronx Science do lab once a week or more, thanks in part to the generous contact time allocated to science classes.  While a standard period is only 40 minutes, most Chemistry classes meet between 7 and 10 times a week!  So the AP Chem class, for example, meets every day Monday through Friday for 80 minutes.  And while the lab spaces are crowded, most students seem to work very well in this environment.

Gen Chem Lab

Larger classes mean that students work with less individual oversight from the teacher.  While this could be viewed as a negative, in fact it seems to have taught these students to be independent and self-reliant.  They worked with confidence and efficiency, and when they got stuck they first tried to get themselves unstuck rather than run to the teacher at the first sign of trouble.  Occasionally, they would seek help from a classmate when they were uncertain or confused about something.  Rather than merely provide the answer, most of their peers gave the same kind of response that their teacher might:

“What do YOU think you should do about it?”

“Well, think about it – will your endpoint be acidic or basic?”

“Read your handout, dumb-butt.”

Well, almost the same kind of response.

The bell eventually rang, and I eased my way out into the crushing mass of teens all struggling to squeeze their way past the throngs to their next class.  I snapped a few photos along the way which give clues to some of the extensive independent research that students here engage in:

Student Research

Construction of Crystalline Metal Organic Frameworks as a Potential Hydrogen Fuel Cell Storage Matrix?  As a high schooler?  Wow.

And this:

Reactions Journal

Yes, they have a student-written and edited Physical Sciences Journal.  Double wow.

I found Analytical Chemistry – like all rooms and all offices, the lab was locked until Lauren arrived with the key.  Watching her Analytical Chemistry lab was a treat.  Seventeen teams of two students crammed into the advanced chem laboratory, and were immediately at work.

Advanced Chem Lab

Those little glass enclosures are how you can provide hood space (to vent toxic or smelly gases) for 34 kids simultaneously.  Lauren’s students are engaged in a week-long project to see which commercial antacid neutralizes the most stomach acid for the least amount of money.

Antacids

These students were all upperclassmen, and took this lab very seriously.  They aimed for extreme precision and accuracy, using primary standards and volumetric equipment to carefully calibrate their acid and base titrants.  Lauren has built an impressive curriculum for this class from scratch, based partly on her own lab experience as an undergrad.  I am planning on stealing several of her awesome-sounding labs (she generously offered to send me handouts of anything).  My favorites included: Concentration of Dye in Gatorade, Determination of Calcium by Titration with a Chelating Ligand, Amount of Phosphoric Acid in Cola, and Investigation of Buffers in Lemonade.  I love the demanding, sophisticated nature of these labs coupled with their investigation of common, everyday items like antacids, Gatorade, calcium supplements, lemonade, and Coke.

When their investigation is complete, each student will write an elaborate and professional lab report.  Lauren pulled one out for me to look at from last week’s lab.  It was nearly 10 pages, and from scanning through it I believe it would have earned a favorable grade from my college lab TA at Yale.

I handed the report back to Lauren and asked how she handled the workload.  With classes of 30-40 students, courses that meet 7-10 times a week, lab reports that approach the length of feature articles in the Journal of the American Chemical Society, and a daily NYC commute from hell, this seemed a lot to put on the shoulders of someone still her 20s.  Oh, and I forgot to mention that she is one of the lead teachers for the intro chem classes, and is helping to mentor the seven new chemistry teachers (most of whom are new to teaching).  She just smiled.  “It can be hard sometimes.”  This is obviously someone who loves her job.

I should mention at this point that despite some very different challenges, the teachers at Groton are no less busy or less dedicated.  While they enjoy small classes, a small department (i.e. two total teachers) means that the Groton chemistry teachers often each teach three different courses: intro, AP, and a STEM course that meets for double periods.  And when the Bronx Science teachers are shoveling their lab reports into their briefcases for the drive or ride home, Groton teachers are off to sports practice (coaching is part of the expectation there).  Then they might supervise a club, attend an evening school event, and then spend the next several hours on dorm duty.  They live on campus, eat every meal with the students, and are available literally 24-7.

So my hat is off to all of the very talented and dedicated teachers I met last week.  I again came away from my visits impressed and inspired.

Leave a comment

Filed under Teaching

Two Excellent Schools, Worlds Apart – Part I

As part of my recent trip to the Northeast, I visited two secondary schools: the Groton School and the Bronx High School of Science.  At first glance it’s hard to imagine two schools that are more different.  Groton is a small, private, Episcopal boarding school nestled among 385 acres in rural Massachusetts.  Tuition, room & board run nearly $52,000.  Classes are small, usually 12 to 16 students, with an entire grade consisting of only 80 students.  Bronx Science in contrast has almost 800 students per grade crammed into a single building on West 205th St in the Bronx.  It is a public, secular, day school offering free tuition.  The classes I observed ranged from about 32 to 40 students.

Despite their eye-popping surface differences, both of these schools are filled with inspiring teachers whose tireless and imaginative classes offer students world-class educational opportunities.   I am grateful to both schools for allowing me to visit, and for sharing ideas and inspirations that I will take back to my own teaching next year.

My visit to Groton began with an hour’s drive northwest of Boston into the rolling Massachusetts countryside.  The campus is beautiful, even on a gray and dreary early December morning.

Groton

Most school days start with a short Episcopal Chapel service.  I was impressed with the students’ behavior in the Chapel.  By 7:59, every student was seated and settled.  Not a single person entered late, and there were no signs of cell phones or other distractions.  I have never been surrounded by hundreds of teenagers in such deep and absolute silence.  They listened attentively to the adults and fellow students who spoke.  One of their classmates gave a thoughtful reflection on privilege and perspective, showing a keen awareness that life in the Groton bubble is not necessarily representative of the “real world.”

Chapel

After Chapel, students filed out to their first class.  I watched a number of classes, including some chemistry classes taught by Sandra.  I was impressed by her really intentional use of technology.  She showed YouTube clips of Young’s classic double slit experiment demonstrating quantum interference, and PhET simulations showing the interaction of light and matter.  Sandra had selected videos and simulations that showed complex interactions that are hard to explain verbally “at the blackboard.”  She paused the simulations, probed students’ understanding, and asked them to predict what would happen when she changed the parameters.  At the end of class, she mentioned that all of the links for the videos and simulations were on the course website so that students could review them on their own at a later time.  I was struck by how effective and interactive this use of technology was.  Instead of reducing or replacing in-person interaction, Sandra’s use of technology actually augmented her in-person interaction with the students.

An interesting aspect of Groton’s science program is the introduction of an alternative STEM track for 9th and 10th graders.  The STEM (Science Technology Engineering & Math) classes are combined science and math classes, each meeting for double the time of a normal class and with two teachers (one science, one math).  The STEM courses provide an interdisciplinary approach, combining science and math education often through the lens of technology and engineering.  The classes make significant use of manipulatives, from store-bought pre-assembled models to student-built commercial geometric forms to homemade structures comprised of cardboard, tape, construction paper, gumdrops, toothpicks, straws, and Styrofoam.

Manipulatives

Manipulatives

During one class I observed, the students were exploring energy efficiency in the design and construction of different sized and shaped houses.  They had to use their knowledge of geometry, algebra, and science to design and build a model house.

Energy Efficiency Assignment

Then they would test the houses to see which one could be heated most efficiently by using a light bulb and thermometer.

Lighted house

Then they had to draw some conclusions about what parameters of the house mattered most in an energy-efficient design – surface area? volume? some ratio of different measurements?

Two sections of this STEM class were running simultaneously in adjacent rooms (separated by large glass windows), and for a while they combined the classes into one larger class while the students were working.  This allowed an amazing ratio of students to instructors: 22 students in a room with one physics teacher, one bio teacher, and two math teachers.

STEM classrooms

Another STEM class I watched had students designing towers out of straws, paper, and tape.  This was an exercise in optimization.  Each material had a certain cost.  The tower had to be a certain height and support a given weight of marbles.  And the students only had a limited amount of time to build their tower.  Again, engineering provided a framework for applying the science and mathematical lessons they had learned.

Tower

Tower supports

Even more “traditional” classes featured visuals and manipulatives.  A chemistry lesson on naming ionic compounds and writing formulas was enhanced through the introduction of magnetic cut-outs of different ions.  Positively charged cations had a notch cut into them to show they were missing an electron, while negatively charged anions had a corresponding wedge showing an extra electron.  They fix together neatly showing a balanced ionic compound.  Cations and anions with charges bigger than one had multiple notches or wedges, showing visually how and why ions must combine with each other in certain ratios.

Ions

The students at Groton are clearly getting a really strong science education.  I wondered how their experience would compared to the students at Bronx Science, who I would be visiting just two days later.

Leave a comment

Filed under Teaching

Washington Educators Working to Make a Difference – Part II

Another teacher I’ve been privileged to spend a few days with is Bill from SHS down in Bellevue.  Bill is a bit of a jack of all trades: science teacher, instructional coach, curriculum developer, technology guru, etc.  I honestly can’t remember what his official title is, but he is part science teacher and part education wonk (and I mean that in the best, most complimentary way possible).

Bill and a bunch of his colleagues down at SHS have a little release time paid through a grant, and have been using it to re-imagine their school to address the needs of kids in the 21st Century.  They are have decided to emphasize STEM (Science, Technology, Engineering, & Math) fields in particular to help get students excited about new job opportunities in STEM fields and to help make them informed citizens in our new information and technology age.

The easy way to transform your school into a STEM institution would be to get big $$$ from local businesses, a school levy, the Gates Foundation, a federal grant, or whatever and use it to buy tons of laptops, iPads, science labs, and fancy machines that go PING!  Taa-daa!  STEM School!  Of course this approach, while exciting and sexy, doesn’t buy you good teaching (or good learning).  You have the same school (and program, and school culture, and teachers, and…), but now just with a lot of fun gizmos.  But gizmos don’t equal powerful learning experiences.  So instead, Bill and his fellow educators are doing this the hard way.  They are re-thinking what good teaching is in the STEM context, and helping to encourage and train their colleagues to use some interesting and innovative new approaches to teaching.

I won’t innumerate all of the cool things I saw at SHS in this one blog post, but I do want to tell you a little bit about the project-based learning that several of the classes are implementing.  The way Bill explains it, the curriculum is structured around something called “challenge cycles.”  Essentially, they give students really complex, challenging, real-world problems for them to solve – like for instance, “How can you grow the most amount of a food crop with the highest protein content using the smallest amount of resources?”  Then lessons are built around the content and skills the students will need to be able to solve the problem.  These lessons may include socratic seminars, lectures, reading, research, etc.  Projects and assessments follow – i.e., the students try to actually solve their challenge problem, are assessed on their learning and work during the unit, and reflect on their progress.

In the 9th grade science class, students started out with an aquaponics project.  The challenge question might be something like “How can you create a human-engineered self-sustaining animal and plant system that can provide nutritional benefits to people?”  This opening project is designed to teach students a bit about how science and engineering are done.  They also practice a “systems thinking” approach to a complex problems, in this case one that has interacting biotic and abiotic components.  Chemical reactions come into play in several places, especially with how nutrients like nitrogen cycle through the system.

The projects themselves take different forms (of course, because they are designed by the students), but most of them look something like this:

Students make a sand or rock bed, and select one or more types of plants to introduce to the container.  They set up a water system that runs into a reservoir below.  Other organisms are then introduced by the students to the system, from bacteria all the way up to fish.  The system interacts on many levels – the fish create nitrogenous wastes which are in turn processed by the bacteria and then absorbed by the plants as fertilizer.  Temperature, pH, oxygen levels, and dissolved organic solids can be monitored and adjusted in different ways.  Students can make hypotheses about what they think will happen, and then track the progress of their experiment over the course of many weeks.

Right now, Bill and his students are immersed in a study of nuclear chemistry and nuclear physics.  They are in the research phase right now.  After discussing the challenge question (something about nuclear power), the students decided there were a list of questions that they needed answered about nuclear science.  Here is the list that the students came up with:

Bill obviously helped to structure and scaffold their discussions, but the students made the actual decisions about what to learn.  This gives them buy-in, agency, and ownership of the process.  Now in the research phase, I heard Bill answer more than one student question with something like “Well, you decided that you needed to know this, right?  So what exactly are the important parts you need to know, and how do you know where to go next?”  The kids were using various resources including text books, the internet, and a fun-looking book called Physics for Future Presidents.

On my most recent visit, Bill and his colleague Keith were planning their next unit on polymers and organic chemistry (yep, these are the 9th graders!).  Their challenge question for the unit is going to be something like, “How can you create a custom organic polymer that can create and destroy micelles (tiny bubble-like structures) which can deliver anti-cancer drugs to precisely the correct location inside the human body?”  Bill and Keith are working with researchers at the UW who do exactly that, and the UW profs have agreed to help the kids synthesize and test polymers that will bind to the drugs tightly enough to get them into the bloodstream and into the cells, but loosely enough that the drugs can actually be released at the right time.  The students will need to learn a fair bit of organic chemistry, and will make important decisions about which kinds of monomers to utilize and how to test the resulting polymers using phosphorescent dyes.  Too cool!

There are of course trade-offs in adopting a problem-based learning approach (it takes longer, it can be “messy” on several levels, and it requires a thoughtful and patient teacher), but the potential benefits seem huge.  Here’s a little graphic that Bill shared with me, outlining some of the important components of problem-based learning:

One final thing that I think is really great about the work that Bill and his colleagues are doing is that it is “bottom up” education reform.  The changes that are going on at SHS were not dictated by the district or mandated in a directive from the school administration.  Classroom teachers have been instrumental in asking for change, for helping to secure funding, and for designing, implementing, and coaching each other in these new techniques and ideas.  This is not to say that I think there is no place for educational leadership at the district or school administrative level, but merely that teachers (like students) get more buy-in, agency, and ownership when they are directly involved in all phases of the process.  Keep up the good work, Bill!

1 Comment

Filed under Teaching

Washington Educators Working to Make a Difference – Part I

I spent a number of days last month visiting local public high schools, talking to teachers, and watching classes (mostly in the sciences).  The dedication and creativity of the educators I saw in action were inspiring, and gave me ideas for my own classes next year.

I watched Mark, an old colleague, teaching a pre-IB science class at IHS in Kenmore.  Mark is a veteran teacher, and a true professional who knows a thing or two about the craft of teaching.  And it’s a good thing, because his current assignment is a very tall order.  He has six sections of students, a total of 201 sophomores.  IHS houses students grades 10-12, so these students are also new to the high school experience.  The class I watched had 36 kids, neatly arranged in six rows of six.  It’s called pre-IB science because it is designed to prepare students for the rigorous International Baccalaureate classes in Chemistry and/or Biology the students will be taking as juniors and seniors.  As such, it contains a lot of introductory chemistry content, a pre-requisite for both of these IB sciences.  But Washington state also has a High School Proficiency Exam (the successor to the WASL) which will test sophomores with a content-specific end-of-course exam in biology.  So part of Mark’s pre-IB class must necessarily cover enough biology content to ensure they pass this exam (which will be required for graduation).

Some teachers might consider this assignment a daunting prospect: over 200 students, arriving 30-something at a time starting at 7:10am (and continuing for 6 non-stop hours), all needing to learn the equivalent of two years of science in only one.  Mark throws himself into it with enthusiasm: 36 students for 75 minutes – no problem!  As the bell rang, the class began at once.

The students had done a lab during the previous class (a gravimetric analysis of magnesium oxide to find its empirical formula, MgO).  One of the things that I notice is how Mark weaves in their new experiences with some themes and analogies that he has been using recently – for example, that chemical reactions in the lab are just like chemical reactions in the kitchen (i.e. cooking and baking).  He tells a great story of making special chocolate chip cookies with an old family recipe, with 2 cups of sugar, 1 cup of flour, Mexican vanilla, 1.5 cups of “heaping” cups of chocolate chips, etc.  The ingredients are like reactants which get chemically transformed in the baking through the application of heat and time.  The magnesium and oxygen react in a similar way in the lab crucible.  This could be a cheap, throw-away example, but Mark really takes his time sharing a bit of himself with the class, and painting for them a vivid picture of the slightly under-baked cookies with the soft gooey center.  Mark is a good story-teller, and the kids (all 36 of them!) are really engaged in his stories.

The students also stay focused, because they never know when Mark will tell a joke or funny anecdote, usually at his own expense – like enjoying the free donut at Krispy Kreme so much that he goes outside, puts on a disguise, and returns for another one.  Or the time when Chips Ahoy ran a marketing promotion guaranteeing an average of 16 chocolate chips per cookie.  Mark bought a bag of Chips Ahoy and a notebook, and set out to see if they really did have the requisite 16 chips per cookie.  He discovered that while the chips were really numerous, they were also really tiny!  He actually broke up the cookies, separating out a small pile of tiny chips from the larger pile of remnant non-chip cookie.  While the kids are still laughing at this visual, he whips around and uses the “chips and cookies” story as the perfect visual example of a percent composition by mass.  Even though the chip components are numerous, their small mass leads to a small overall percentage of chocolate in the cookie.  Similarly, you can also do a percentage composition calculation with magnesium oxide.  Although there are just as many oxygen atoms as magnesium ones, the compound is less than 40% oxygen by mass since the oxygen atoms are smaller.  The kids (and Mark) are laughing all the way to the bank of knowledge and understanding.

Humor, analogies, and stories are all powerful methods that Mark uses to keep his huge class engaged for the long block period, encouraging them to come with him on an entertaining and enlightening journey of science discovery.  I felt pretty inspired to do some learning (and some teaching) by the end of class too, which was pretty remarkable considering that I’m usually only ready for a nap after a 75-minute class.  And I also wouldn’t say no to one of Mark’s under-baked cookies with chocolate chips and Mexican vanilla.

Hungry for more?  I was going to write about more of my teacher visits in this post, but it’s late and I’m tired, so look for more in the next edition coming soon!

Leave a comment

Filed under Teaching

Yale

Up until this point, I have focused most of my Big Year on observing the natural world and seeing birds and other wild critters.  But as Labor Day passed, and schools all over the country have resumed their academic schedule, I have started to think more seriously about the other half of my Big Year: the search for good teaching.  I have to say, I’m not entirely sure how to approach blogging about good teaching and good teachers – there is an element of privacy and discretion that I want to consider carefully.  I also don’t want to  set myself up as some kind of judge or arbiter of what is “good teaching” (and conversely what is not!).  But I also want to share a few of my musings and thoughts on the matter as I visit various schools and teachers this year.

Yale is a bit of an odd choice to begin my exploration of good teaching, considering that I am primarily interested in teaching at the secondary (i.e. high school) level.  And while there are some excellent professors at Yale, many of them are known more for their expert scholarly research than for their teaching prowess.  But I was passing through the area, and felt a strong attraction to return to the place where I first discovered my own passion for teaching.  It would also give me the opportunity to interview one of the most influential teachers in my own life, Dr. J. Michael McBride, professor of chemistry.  For the past several decades, Dr. McBride has taught a freshman organic chemistry course, one that I took myself in the early 1990s, and later returned to as a senior to help tutor struggling students.

This is Sterling Chemistry Laboratory, the building where I learned chemistry at Yale, and the place where Dr. McBride still keeps his office.

While McBride’s class did include most of the concepts you’d find in a “standard” organic class like stereochemistry, nucleophilic attack, and resonance stabilization, he also spent a great deal of time trying to teach more fundamental lessons.  A major theme for the course is “How do you know?”  And not just how do you KNOW, but HOW do you know, and also how do YOU know?  Professor McBride shared with us a historical perspective on how we know what we know in science – a perspective that renders insight into how science operates, and what is “good science” and what is not.  There are “no rigid rules about what constitutes good science or bad,” he said, which is why it is so important for students to “develop good taste” for what makes convincing evidence.  Dr. McBride hopes that as a result of his class, students will learn to “distrust assertions” and instead make full use of their reasoning abilities and knowledge of science.

Another thing that made Dr. McBride’s class different than many other organic classes was his emphasis on learning the basic tenets of quantum mechanics and molecular orbital theory.  While these topics seemed mind-blowingly sophisticated to our 18 year-old brains at the time (and of seemingly little relevance to organic chemistry), we soon began to see how they could be used to truly understand organic structures and reactions on a deep level.  With a solid appreciation for MO theory, we didn’t have to simply memorize the dozens and dozens of basic organic reactions – we could predict and intuit for ourselves what would happen when two molecules react.  This approach turned out to be immensely powerful, not only for learning organic chemistry, but more broadly to convey the idea that the natural world is built on logical, understandable truths.  And if you are able to master these truths, you can understand and accurately describe a great deal about the world around us.

Anyone can watch the lectures associated with the first semester of Professor McBride’s course – they are available through the Open Yale Program here.  And while only people with a deep interest in chemistry will likely be interested in the session on “Stereotopicity and Baeyer Strain Theory,” almost anyone might enjoy his opening lesson on “How Do You Know?” or some of the later ones on the historical development of chemistry.

I spent a couple of days at Yale, visiting old professors and mentors, touring the campus, and even coincidentally running into one of my former Lakeside students on the way to her research lab in Sterling!  My walks around campus also allowed me to reflect on what I thought “good teaching” was when I first started down the road to being a teacher myself in the 1990s.

1 Comment

Filed under Teaching

Beginnings

I am currently preparing for my first trip to northern Minnesota and the northern lower peninsula of Michigan.  I leave SeaTac the morning of June 13.  Just have to make it through final exams, writing grades and comments, graduation, and getting everything together for my trip.

Leave a comment

Filed under Birding, Teaching